2019 Canandaigua Lake Sampling and Monitoring Program Report to the Canandaigua Lake Watershed Council February 5, 2020

Patty Thompson, M.S. Assistant Professor of Environmental Conservation

Program Background

- Program in it's 25th year (1996 2020)
- FLCC's role
- Lake attributes that are monitored each year since 1996:
 - Water clarity
 - Lake algal productivity
 - Lake nutrients
 - Water quality profiles: temperature, dissolved oxygen, pH, conductivity, blue-green algal cell counts

Recent Program Changes

- 2018:
 - New FLCC Researcher
 - Partnership with the Finger Lakes Hub
 - Additional nearshore phosphorous sampling
 - Reduced sampling period:
 - From April to November
 - To May to October
- 2019:
 - Increased FLCC student participation
 - Updated QAPP
 - Data archiving (beginning this spring)
 - Increased profile resolution sampling (2019)

Canandaigua Lake Monthly Monitoring Program

Note: October is missing due to probe failure

Meter failure on 8/30 at 11, 12 meters

Meter failure on 8/30 at meters 1-6 and 11/6 for meters 0.23 to 22 for D.O.

A word about R²

 $R^2 = 0.7255$

Note, 2019 April and November data has not yet been provided by NYS DEC

Long-term summer average clarity 7.0 m (+/- 1.02)

Summer Mean Lake Clarity (1996 - 2019)

2019 Seasonal Algal Abundance Chlorophyll-a (ug/L)

Long-term Summer Mean Algal Abundance (1996-2019)

What affects algal abundance?

Nutrients – managing nutrients is complicated! It requires monitoring external loading of phosphorus and nitrogen, and total concentrations in the lake.

- Some sources of nutrients are "easily" managed
 - Effective watershed regulations may reduce external loading
- Other sources of nutrients "require higher levels of resource commitment and restoration/enhancement activities"
 - Intense storm events produce locally high nutrient runoff, leading to sub-watershed storm water management projects
- The impact of biologically-bound phosphorus affects the concentrations detected in the lake
 - Changing role of invasive quagga and zebra mussels living in the benthic zone of the lake

Total Phosphorous

- Includes ortho-phosphate and the phosphorus in suspended plant and animal fragments
- New York State's trophic assessments
 - Eutrophic: total phosphorus readings exceeded 20 ug/l
 - Mesotrophic: between the two categories
 - Oligotrophic: total phosphorus readings below 10 ug/l

2019 Total Phosphorus (ug/L)

Comparison of "Usual" versus "Extra" Sites for Total Phosphorous (ug/L)

QAQC results

Thank you! Questions?

Patty Thompson, M.S. Assistant Professor of Environmental Conservation

Patricia.Thompson@flcc.edu

